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Siebenmann-type cobordisms are constructed to describe topology changes with 
the Seifert fibered homology spheres in in- and out-states. We study the problem 
of determining of topology-changing amplitudes for these quantum tunneling 
processes. The calculations are performed in the stationary phase approximation 
for Kodama wave functions. In this approximation the amplitudes are expressed 
in terms of Chern-Simons invariants of flat SU(2)-connections over the cobordism 
boundary components. The topology-change amplitudes found are factorized into 
the Kodama wave functions for the lens spaces. The results are compared with 
those for FintusheI-Stern-type cobordisms which have been previously 
investigated. 

1. ~ T R O D U C T I O N  

The topology-change problem is one of the obstacles to constructing (3 
+ 1)-dimensional nonperturbative quantum gravity (Horowitz, 1991). The 
purpose of this article is to investigate a wide class of topology changes 
which are described by 4D Siebenmann-type cobordisms (Siebenmann, 1979). 
The spatial sections of  these cobordisms are 3D Seifert fibered manifolds 
(Sf-manifolds) (Orlik, 1972). An Sf-manifold is a 3-dimensional manifold 
which is represented as union of pairwise disjoint loops (knots). We restrict 
our consideration to topology changes in an ensemble of  Seifert fibered 
homology spheres (Sfh-spheres). They represent a direct generalization of 
the ordinary sphere S 3, but have some advantages; for example, links are 
naturally defined in the Sfh-spheres. [A link L is a finite collection of smooth, 
disjoint, oriented, simple closed curves (loops) F = {T i l i  = 1 . . . . .  m}  

(Eisenbud and Neumann, 1985).] In nonperturbative quantum gravity links 
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are used to define gauge-invariant variables (Rovelli and Smolin, 1990) and 
also to define a basis of states (Jacobson and Smolin, 1988) satisfying all 
constraint equations in connection representations. To consider topology 
changes it is necessary to use various natural operations over topological 
spaces and links such as connected sum, disjoint sum, and cabling, which 
can be used to construct new spaces and new links from initial ones. As 
demonstrated by Eisenbud and Neumann (1985), these operations are special 
cases of one which is called splicing. However, the splicing operation more 
probably results in links in Sfh-spheres rather than in S a. It is therefore most 
convenient to utilize Sfh-spheres as the ambient spaces for links from the 
beginning. Using the techniques of Siebenmann's cobordism constructions, 
we demonstrate in Section 3 that topology changes with participation of Sfh- 
spheres ("maternal" universes) are accompanied by creation and annihilation 
of 3-spheres with two exceptional fibers ("baby" universes). 

Our basic assumption is that all physical quantum states are represented 
as expansions with respect to Kodama wave functions (Kodama, 1990). 
Under this supposition the topology-changing amplitudes are constructed in 
connection representation. A stationary phase approximation is utilized, i.e., 
we restrict our consideration to the equivalence classes of flat connections 
on 3D sections of 4D cobordisms which describe the topology change. This 
situation naturally takes place in (2 + 1)-gravitation, as a consequence of 
the fact that the vacuum solutions of (2 + 1)-dimensional Einstein equations 
are flat Poincar6 connections. 

Moreover, there are different modifications of general relativity corres- 
ponding to exactly soluble diffeomorphism invariant B A F-theories which 
were initiated by Horowitz (1989). The field equations in B A F-theories 
require the connection to be both flat and torsion-free, just as in the (2 + 
1)-dimensional case. The reduced phase space variables are the holonomies 
of flat connections for loops which form a basis of the first homotopy group. 

In developing the analogy with (2 + l)-gravity we use one more (2 + 
1)-dimensional toy-model observation. It was demonstrated (see, e.g., Martin, 
1989) that in 3D gravity it is possible to introduce a nontrivial dynamics by 
allowing conical singularities to represent point particles. Similarly, it might 
be useful to enrich the (3 + 1)-dimensional theory by admitting 1-dimensional 
exceptional orbits (fibers) corresponding to string structures. It is known 
(Eisenbud and Neumann, 1985) that the Sf-manifolds and the Seifert links 
provide an appropriate model of spatial sections possessing such exceptional 
orbits relative to the action of the group S 1 [--- U(1)]. We consider this type 
of manifold as admissible 3-dimensional section of Euclidean space-time 
cobordisms describing topology changes. In physical terms this model corres- 
ponds to the concept of a universe which is completely woven of closed 
strings (loops) (Ashtekar et al., 1992). 
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Sections 2 presents important notations and definitions of basic concepts. 
In Section 3 the Siebenmann-type cobordisms with borders are con- 

structed. They contain some Euclidean-signature regions and therefore can 
be interpreted as space-time models of tunneling topology changes. 

In Section 4 a certain type of boundary condition between Lorentzian 
and Euclidean signature regions is discussed. 

In Section 5 topology-changing amplitudes are constructed in the connec- 
tion representation on the basis of Kodama's wave functions for Siebenmann- 

t ype  cobordisms. A stationary-phase approximation corresponding to the fiat- 
connections contributions to topology-changing amplitudes is used. These 
results are compared with the ones obtained in the case of Fintushel-Stern 
cobordisms. 

2. B A S I C  C O N C E P T S :  DEFINITIONS AND NOTATIONS 

We refer to Neumann and Raymond (1978) and Scott (1983) for basic 
concepts and terminology about Sf-manifolds and particularly about Sfh- 
spheres. Moreover, to construct the Siebenmann-type cobordism we will 
utilize two topology operations, a s p l i c i n g  process for Sfh-spheres and a 
sp l i t t ing  process inverse to the first one, also known as a v e r t i c a l  p i n c h  

(Siebenmann, 1979; Rong, 1993). 
In this paper a Seifert fibered manifold (Sf-manifold) will mean an 

oriented closed connected 3D manifold M(.a_) =-- M ( a l  . . . .  , a~) admitting a 
pseudofree S Laction. A pseudofree S t-action is a smooth action such that it 
is free except for finitely many exceptional orbits (singular fibers) Sl . . . . .  
Sn with isotropy Zal  . . . . .  Zan , respectively, where al . . . . .  an E Z;  a i > 1, 

i = 1 . . . . .  n. If 

p:  M ( a )  ----> M ( a ) I S  1 = S2(a) -- $2 (a l  . . . . .  a,,) (2.1) 

is the Seifert fibration, then the base space S2(a_) is an orbifold that possesses 
n exceptional cone points (with conical angles 2"rrlai, i = 1 . . . . .  n) .  We 
shall restrict our attention to the case where the genus g of the orbifold S2(_a_) 
is zero. 

Let 

TSt  = (S  l x D2)1 . . . . .  TS,, = (S  l • D2), 

be disjoint tubular neighborhoods of exceptional fibers S1 . . . . .  S~, and M0(a.a) 
= M(_a_) - TSI  t.! . . .  t.I TS,, (LI is disjoint union). Since 

P0: M0(a) ---> M o ( a ) l S  1 = S~(a) (2.2) 
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[where S2(a) = S 2 - -  0 2 !1 , - -  I I  D 2 ,  the disc D 2 being a neighborhood of 

i's cone point; when n -- 3, S02(at, a 2, a3) is a Thurston trinion] is an ordinary 
S Lbundle over a connected surface with boundary, which admits a section 
surface R C M0(_q), then xi = -OR f3 TSi C O(TSi) is a torus section curve 
(toms knot), i = 1 . . . . .  n. If h is a typical fiber (regular orbit) of  S Lfibering 
p, then a curve aixi + bih is homological to zero (i.e., is a boundary) in 
TSi. Therefore 

"trl(M(a)) = (xl . . . . .  Xn, hlhxih- lx:  -! = 1, xaih bi : 1, X 1 ' ' "  X n = 1) 

(2.3) 

is a fundamental group presentation of Sf-manifold M(a) with unnormalized 
Seifert invariants (Neumann and Raymond, 1978) 

(g  = 0; (al, b 0  . . . . .  (an, bn)) (2.4) 

which satisfy gcd(ai, bi) = 1, i.e., ai and bi are relatively prime for every i. 
If also al . . . . .  an are pairwise relatively prime and satisfy 

~ bl~ i = 1, where O" i = aJai, a = al "'" an (2.5) 
i=1  

then the Sf-manifold M(a_) is called a Seifertfibered homology sphere (Sfh- 
sphere), i.e., this Sf-manifold has homology groups that are isomorphic to 
those of  an ordinary 3-sphere S 3. In this case the integers bi are defined, 
since we can take b,<r~ - 1 (mod a~) from (2.5). We use the standard notation 
~(al  . . . . .  an) = ?~(a_) for the Sfh-sphere. 

Strictly speaking, a link L = (E(_a_), L~ t.J --.  U Lm) is a pair consisting 
of an Sfh-sphere E ~ )  and a collection of  smooth, disjoint, simple closed 
curves Li C E a(_a_). A Seifert link is a link L whose exterior E a(_a_) - (TL1 t_J 
�9 . .  1,3 TLm) admits a Seifert fibration (Eisenbud and Neumann, 1985). 

We know that for a Sf-manifold to be a Sfh-sphere no less than three 
exceptional orbits are necessary. When n = 1, 2 a Sf-manifold is either a 
lens space L(a, b) or an ordinary 3-dimensional sphere S 3 endowed with the 
structure of S Lfibering which has the Seifert invariants (ab a2) (Scott, 1983). 
In the last case, the Sf-manifold M(a~, a2) is homeomorphic to S 3. Let us 
consider in more detail the construction of this Sf-manifold, since it is M(a~, 
a2) that arises as one boundary component of  the Siebenmann-type cobordism. 
Let TS~ be a Seifert fibered solid torus such that a typical fiber h~ (on the 
boundary OTSO is expressed by a topology standard longitude Ii and a merid- 
ian ml as hi = atll + a2ml. [The simple closed curve hi is a (al, a2)-cable 
knot on OTS1 (Eisenbud and Neumann, 1985).] Similarly, for the second solid 
t o r u s  T S 2  w e  have a typical fiber h 2  = a212 + a l i n E .  The Seifert structures 
of these solid tori are sewed smoothly along the boundaries OTSI and OTS2 
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if hi = h2. This condition leads to the following sewing rule: Ii = m2 and 
/2 = m~ for the solid toil. It is well known that the manifold obtained as a 
result of this sewing operation is homeomorphic to a sphere S 3. Thus we 
obtain the 3-dimensional sphere M(a~, a2) with the Seifert structure (S ~- 
fibering). For more details we refer to Scott (1983). 

It will be clear from Section 3 that the sewing operation, which has 
been defined for two Seifert fibered solid tori, is a special case of the general 
splicing operation. The latter plays a fundamental role in the process of 
construction of Siebenmann-type cobordisms (Siebenmann, 1979). 

3. SPLITTING AND SPLICING OF Sfh-SPHERES 

Let M~l,n) ----- M(al  . . . . .  an) be a Sf-manifold. Suppose that T is a 
separating vertical (consisting of fibers) torus in M~l,n) so that 

M(al~) = X(al,i) O r  X(ai+l~) (3.1) 

where 

X(al,i) = X(ajt . . . . .  ay i) and X(ai+l,n) = X(aji+l . . . . .  ajn) 

are Seifert fibered manifolds with the boundaries 

0X(al,/) = -0X(ai+l,n) = T 

The set {aj~ . . . . .  ajl} is nonempty subset of the set {at . . . . .  an} such that 
2 < i -< n - 2. Since the manifolds X(a_~,i ) and X(a_i+l~) inherit the Seifert 
fibered structures, this situation is a special case of  the Seifert link structures 
(Eisenbud and Neumann, 1985). In other words, the torus T separates the 
Sf-manifold M(al,n) such that i exceptional fibers are found in the Seifert 
fibered submanifold X(a_l,i ) and the other (n - /) exceptional fibers are found 
in X(9.i+l,n). 

Let 

M(ao,3 = X ( a l , i )  ['-JT TSo (3.2) 

where TSo is a solid torus whose meridian m0 C O(TSo) is identified with a 
curve aoXo + boh in OX(9_l,i). We utilize the following notations: 

ao = aji+l " ' "  ajn, bo = ao ~ b j r / a J r ;  X 0 = R t"l OX(al,i) 
r= i+ l  

x0 is a section curve, and h is a typical fiber of  the Sf-manifold M(a~,n). 
It has been demonstrated (Siebenmann, 1979) that the space M(ao,i) is 

a Sf-manifold with (i + 1) exceptional fibers Sjo, Sj~ . . . . .  Sji and Seifert 
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invariants {(ajs, bA)ls = 0, I . . . . .  i}. Should the initial Sf-manifold M(_qL,) 
be a Sfh-sphere, then M(9_o,i) would be one, too. 

The analogous assertions are valid for the space 

M ( a i + l , n + l )  - -  X(ai+l,n) U T TS.+1 (3.3) 

where TSn+ 1 is a solid torus whose meridian mn+ 1 C c~(TSn+I) is identified 
with a curve an§247 + bn§ h in OX(ai§ We utilize the same notations 

i 
a.+l = aji "'" aji; bn+l = a.+l ~ bjslaA; x.+l = R CI OX(ai+l,.) 

s = 1 

The operation which associates the Sf-manifolds M(ao,i) and M(ai+l,n+l) with 
the Sf-manifold M(_a_l,n) is called a vertical pinch (Rong, 1993). 

It is important that the Seifert manifold Euler number e = ET=l bilai is 
conserved under this operation, because 

i n+l 
e = ~ bjs/ajs ~- ~ bjrlajr 

s=O r=i+ 1 

The vertical pinch operation splits the Sfh-sphere ~(_~l,n) into two Sfh- 
spheres X~0.i) and ]~(a/+t.,+l). Siebenmann (1979) constructed a cobordism 

W(al,n) ~ W(at . . . . .  an)  

which made this interpretation more explicit. We shall consider only the case 
when a starting Sf-manifold is a Sfh-sphere. 

In our notations it is possible to define Siebenmann's cobordism as 
follows: 

W(al~,) = (~(at~,) LI M(ao, a.+t)) X [ -1 ,  0] O (~,(a_o,i)) LI E(a/+l~+l)) X [0. 1] 

(3.4) 

Observation 3.1. It is clear that Sfh-spheres E~0,i) and E(ai+l~,+t) depend 
on the partition of the set a = {al . . . . .  an} into nonempty subsets {ajl . . . . .  
aji } and a - {aj l  . . . . .  ajl } = {aji+l . . . . .  a jn} ,  2 <-- i <-- n - 2. Therefore 
these Sfh-spheres and the cobordism W(al,n) are more properly denoted as 

X(a0,i)  { j l  . . . . .  Ji}, X ( a  i+l,n+l){ji+l . . . . .  jn} 

and 

W ( a l , n ) { j l  . . . . .  j i }  ~ W(al ,n){ j i+l  . . . . .  in}  

respectively. We will utilize the shortened notations when the information 
contained in the complementary indices is not important. 
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The cobordism (3.4) describes the topology change 

~(al,.) LI M(ao, an+l) --'> ~(ao,i) II ~(ai+l,n+l ) 

since it has the boundary 

OW(al,n) = O(W(al,n)) in II ~(W(al,n)) ~ 

where 

and 

O(W(al,n)) in = (~(al,n) II M(ao, an+O) • {--1 } 

(3.5) 

(3.6) 

O(W(al,n)) ~ = (~(a0,i)) II ~(ai+l,n+l)) • { 1 } 

Siebenmann (1979) introduced a thickening N(T) of the separating toms 
T to pull apart the singularities of  the critical space section in t = 0; however, 
the creases at oX(_a_i,i) • {0} and OX(_a_i+l,n) • {0} remained and had to be 
smoothed out. 

We propose another method to remove the singularities from the Sieben- 
mann cobordism. To this end we observe first that the following surgery 
takes place in the Siebenmann cobordism at the instant when the cobordism 
parameter t = 0: 

(1) The Sfh-sphere X(.q_la) breaks into two Sf-manifolds with borders 

~(al,n) ~ X(aI,i) ) ~.J X(ai+l,n) (3.7) 

and analogously 

M(ao, a.+0 ---> TSo tO TS,,+t (3.8) 

(2) The formation (pasting) occurs at the same time t = 0. As a result 
two new Sfh-spheres 

E(ao,i) = X(al,i) tot  TSo (3.9) 

~(ai+l,n+l) : X(a/-I-l,n) toT TS.+I (3.10) 

arise (vertical pinch operation). 
We suggest separating these two events: (1) bifurcations (3.7) and (3.8) 

will take place at t = 0 and (2) pasting together (3.9) and (3.10) will take 
place at t = 1. As a result we receive a Siebenmann-type cobordism with a 
border (Rourke and Sanderson, 1972) 

wb~ = (E(al~) kl M(ao, a#+O) 

• [ - 1 ,  0] to (X(al,i)) LI X(ai+l,.) kl TSo ki TS.+t) 

• [0, 1] tO (E(a0,i)) II E(ai+l,n+l)) • [1, 2] (3.11) 
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The boundary of this cobordism is divided into two parts: 
(1) The ordinary boundary 

0wb~ = o(wb~ ) in U o(wb~ ) ~ 

where 

and 

o(wb~ in = (X(al,n) U M(ao, an+l)) X { - 1 )  

(3.12) 

and the Sf-manifold 

M(a0, an+l) = TSo Ur  TSn+I (3.15) 

homeomorphic to S 3. 
In the inverse cobordism 

--wb~ = (X(a0,/)) U X(ai+l,n+l) ) 

x [ - 2 ,  - 1 ]  u (X(a~,~)) u X(_a,.+~,n) u TSo U TSn+O 

X [ - 1 ,  0] U (X(at,n) U M(ao, an+0) • [0, 1] (3.11') 

0(wb~ Out = (~(ao,i)) U X(ai+l,n+t) ) X {2} 

which is homeomorphic to (3.6). 
(2) The border 

o(wb~ interm = (0X(al,i)) II OX(ai+lon) I I OTSo U OTSn+l) • [0, 1] 

(3.13) 

Now let us return to the Siebenmann cobordism (3.4) and consider an 
inverse oriented one, 

- W ( a ~ )  = (X(a0,,.)) u X(a_i§247 

• [ - 1 ,  0] U (X(aL.) U M(ao, a.+0) • [0, 1] (3.4') 

This cobordism describes the inverse process 

•(ao,i) ) U E(s ""ff E(al,n) U M(ao, an+l) (3.5') 

with respect to the topology change (3.5). 
At the critical level t = 0 two solid tori TSo and TSn+~ are separated 

from the Sfh-spheres X(.q_0,i)) and X(a~§ respectively. At the same time 
the splicing process forms the Sfh-sphere 

~(al,n) = X(at,i) U X(ai§ (3.14) 
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these processes (splitting and splicing) are separated by an interval [ -1 ,  0] 
of the cobordism time. 

From the physical point of view, the existence of the cobordism borders 
(3.13) indicates that some of the spacelike sections have torus borders oX(_a_). 
These borders mark the limits of where we may probe with our measuring 
instruments. The idea is that border terms in the gravitational field action 
functional carry the significant part of the information (or all of it) about a 
removed part. The most important contributions in this direction are Hawking 
(1976), 't Hooft (1993), and Susskind (1994). Recently Smolin (1995) has 
developed the Hamilton method to describe the gravitational field in Ashtekar 
variables for the space-time manifold with borders of type 0X x [0, 1]. The 
main advantage of the method is the possibility to use the Chern-Simons 
theory in (2 + 1) or 3 dimensions to describe a set of observables in nonper- 
turbative quantum gravity in (3 + 1) or 4 dimensions. 

In the following sections we shall demonstrate that the border terms 
contribute significantly to the tunneling topology-change amplitude. The 
Kodama wave function gives the simplest way to describe topology transfor- 
mations. Since we shall be working in the stationary phase approximation, 
we will restrict the connection to be fiat over Sfh-spheres. The space of all 
flat connections over Sfh-spheres modulo gauge group transformations is 
described by Fintushel and Stern (1990) and Kirk and Klassen (1991). 

4. SEWING TOGETHER EUCLIDEAN AND LORENTZIAN 
SIGNATURE REGIONS 

Let us examine the topology-changing processes in the "quantum 
mechanics of topology" (quantum tunneling). In general these processes are 
classically forbidden since they are transitions through Euclidean-signature 
regions. We adopt the Kodama semiclassical approach (Kodama, 1990; BrUg- 
mann et al., 1992). The wave function or transition amplitude is written as 

*(W0) = C exp( - 1  CS(Wo)) (4.1) 

where 

cS(Wo) = ~ Tr(FA ̂ FA) (4.2) 

is the Chern-Simons invariant of the 4-dimensional elementary cobordism 
Wo = M X I, I = [0, 1], F being a curvature of a connection A. This amplitude 
is the known solution to all constraint equations in Ashtekar's connection 
representation. The wave function (4. l) is the unique solution in the quantum 
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version of the Horowitz B ^ F-theory (Horowitz, 1989). Thus we can obtain 
the Kodama quantum scheme starting from different nonequivalent classi- 
cal theories. 

Let A t be a path of connection At, t ~ [0, 1], over the 3-manifold M. 
According to Kirk and Klassen (1992), this path determines a connection A 
on the elementary cobordism M • L 94e consider the SU(2)-connection 
only. Every SU(2)-bundle over the 3-manifold is trivial. The Chern-Simons 
invariant is a real-valued functional on the space of all connections on a 
trivial bundle. The Chern-Simons invariant is only well defined in R/Z if 
we do not want to specify a trivialization. Let us choose a path At of connection 
from Ao (t = 0) to A l (t = 1). Then 

CS(Wo) = CS(AO - CS(Ao) = ~ Tr(FA A FA) (4.3) 

In particular, if we choose A0 to be a trivial connection (so the form Ao 
-- 0), then we obtain another definition of the Chem-Simons invariant 
(Okonek, 1991) 

CS(ME)=CS(A , )=~ feobCTr (AaObAc+~AaAbAc)  (4.4) 

where A a is the SU(2) spatial connection corresponding to M E • { 1 } (the 
superscript E means that Wo is the Euclidean-signature cobordism), 

Let W be a composite cobordism, for example, (3.4). in this case the 
Kodama wave function has to be generalized because of the multicomponent 
cobordism boundary (Dijkgraaf and Witten, 1990). We shall consider the 
Siebenmann-type cobordisms, such as (3.11) including not only Euclidean- 
signature regions, but also Lorentzian ones, which are sewed along a hypersur- 
face (Sf-manifold)having trivial connection. To introduce the Lorentzian 
signature it is necessary to change the real cobordism parameter t to the 
imaginary one "r = it and to perform a Wick rotation of fields (Fujiwara et 
al., 1992). Thus the Chem-Simons functional becomes 

=il ( 
CS(ML) = iCS(A1) ~ 2  e~bc Tr AaObA c + 2 AaAbAc I (4.5) 

J / 

at any boundary component M L of a Lorentzian-signature region. 
Therefore the generalized Kodama amplitude expression for the Sieben- 

mann, type cobordism is 

~ (W)  = C exp - ~ ekCS(M~) - ~ gmCS(M~) (4.6) 
k=! = 
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where M~, k = 1 . . . . .  K, are boundary (border) components of the Euclidean- 
signature regions; M~, p = 1 . . . . .  P, are boundary components of the 
Lorentzian-signature regions; A E is the Euclidean coupling constant (cosmol- 
ogy constant); A u is the Lorentzian coupling constant, or k = [I/A L] is the 
level of Chern-Simons theory [k should be an integer; see, e.g., Dijkgraaf 
and Witten (1990)]; and r = _1;  ~m = _2"tr (Briigmann et al., 1992; 
Smolin, 1995). 

Now we shall discuss what sort of boundary conditions must be imposed 
Mbouad = Mbound between Lorentzian- and Euclidean-signature at the boundary L E 

Mbound regions. Let the wave function (4.6) be continuous at the boundary L 
E . = Mbound, then 

CS(MLund) = CS(MEund) (4.7) 

However, the expressions (4.4) and (4.5) show that CS(M~ou,d) = iCS(A) is 
purely imaginary, while CS(M~u,d) = CS(A) is real. It follows that the 
connection is trivial at the boundary u E Mbound = Mbound, i.e., 

CS(MLund) = CS(M~ound) = 0 (4.8) 

Similar results were obtained in Halliwell and Hartle (1990) and Fujiwara 
et al. (1992). 

This boundary condition gives the possibility to construct topology- 
change amplitude for the cobordisms (3.11) and (3.11 ') if we restrict ourselves 
only to the flat-connection contributions on the cobordism spacelike sections 
X • {t}, which have nontrivial borders OX • {t} 4= ft. For Siebenmann- 
type cobordisms with borders the result is nontrivial precisely due to the 
border contributions. 

5. FLAT-CONNECTION CONTRIBUTIONS TO THE 
TOPOLOGY-CHANGING AMPLITUDES 

We shall consider connection paths At, i.e., the connection over the 
elementary constituent parts M E • I and M L • I of the cobordism wb~ 
Connections over the initial and final hypersurfaces of the elementary cobord- 
ism are assumed to be always flat. It is easy to demonstrate that this restriction 
corresponds to the stationary-phase approximation for each multiplicative 
component 

* (M)  = C e x p ( - ~  CS(A)) (5.1) 
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of the cobordism wave function (A is the connection over M; IX = 1 if M 
= M E and ix = 2"rri if M = ML). The relation 

~A i ~ ( M )  = ~.abCF~cqt(M ) (5.2) 

demonstrates that the flat connections (Fib = 0) are critical points of the 
Chem-Simons functional [as a Morse function on the orbit space of connec- 
tions over M modulo gauge invariance (Okonek, 1991)]. Consequently in the 
connection representation the flat connections are stationary points of the 
wave function's phase. 

Now we turn to calculate the amplitude of the topology change (3.5), 
which is described by the cobordism w b ~  , (3.11). In this case the initial 
conditions are fixed at the hypersurfaces X(al~) X { -  1 } and M(a0, an+t)) 
• { -  1 }. The cobordism constituent parts with the Lorentzian signature are 

(E(al,n) Id M(ao, an+l)) • [ - 1 ,  0] (5.3) 

The Euclidean-signature component parts of wb~ are 

( X ( a l , i ) )  I I  X(ai+l,n ) I I TSo U TSn+O • [0, 11 (5.4) 

and 

(X(a0,i)) IA X(ai+l,n+l)) X [1, 2] (5.5) 

Accordingly, the boundaries between the Lorentzian- and Euclidean-signature 
regions are 

(X(at~) Li M(ao, an+0) • {0}, (X(a0,i)) i_1 X(ai+l,n+l)) • 12} (5.6) 

These boundaries carry the trivial connections according to the condition 
(4.8). Moreover, the manifold M(ao, an+O is homeomorphic to $3; therefore 
each flat connection over M(ao, an§ is trivial. We suppose that any path A t 

on M (a0, an+l) consists of trivial connections only. 
We recall several key observations about the flat SU(2)-connections over 

a Sf-manifold M. The holonomy defines a homeomorphism between the 
space R(M) of flat connection modulo the gauge group and the space/~(M) 
of conjugancy classes of representations of the fundamental group Wl(M) 
into SU(2). If M = X(a) is a Sfh-sphere, then two flat connections A and 
A' which lie on the same component of the space R(X(_a_)) have the same 
Chern-Simons invariant CS(A) -- CS(A') mod 1. 

Removing a solid torus TS (a torus neighborhood of a fiber S) from a 
Sfh-sphere increases the dimension of the flat connection space: dim R(X(a)) 
> dim R(X(a)), where X~)  = X(a_) - TS. In the space R(X(a)) a piecewise 
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smooth path A t exists joining the flat connections Ao and A1 which lie in 
different components of the space R(~(_a_)). Kirk and Klassen calculated the 
difference of Chern-Simons invariants C S ( A O  - CS (Az )  for Z (_a_) as a function 
of the path joining the restrictions of these connections to X(a). We use their 
results to calculate the contribution of the cobordism border (3.13) to the 
amplitude (4.6). 

For a Sfh-sphere ]s = ~(al  . . . . .  an) the set of connection components 
of R(~(a)) is in one-to-one correspondence with the set of admissible collec- 
tion of the rotation numbers (/) = (It . . . . .  l~), which completely specify the 
gauge class of flat connections on ~(a). In other words, the admissible 
collection of rotation numbers contains the total information about the class 
cr of irreducible representations of % ( ~  a(g_)) in SU(2). Thus C S ( A )  = CS( l ) .  

The calculation schemes for the admissible collections (11 . . . . .  ln) are 
developed by Fintushel and Stern (1990) and Kirk and Klassen (1991). In 
particular, the admissible collection must satisfy the following conditions: 

li is even if bi is even or offh) = + 1 

li is odd if bi is odd and offh) = - 1 (5.7) 

where bi are defined by b,ai -= 1 (modai)  and et(h) is the image of the 
generator h of the center of the Sfh-sphere fundamental group "rrl(~ a(_a_)) 
[see (2.3)]. 

We shall utilize the Fintushel-Stern expression for Chern-Simons 
invariants 

C S ( A )  = CS(1) - e~,.14a (mod 1) (5.8) 

where et,~ = ~7=1 l,<ri and  A is a flat connection on the Sfh-sphere ~(g_t,~). 
Kirk and Klassen (1990) developed a method which gives us the possibil- 

ity to calculate the Chern-Simons invariant of the border (3.13), 

C S ( ( O W )  b~ = (e[,,)214a + (~/4)(/~ + l'+O (5.9) 

where ~ = 0 if or(h) = 1; ~ = 1 if a(h) = - 1 ;  e~,, = ET=t l[o'i, and (/0,i) 
= = l '+0 (l~, l~, . . . ,  l[) and (/i+l,,+0_' (li+l; �9 � 9  In; are the rotation number 

admissible collections, which define the flat connections over the Z(a0,i) and 
E(ai+l,,+l), respectively. 

It is important to observe that the three-dimensional Chern-Simons 
theory acts at the borders of Siebenmann-type cobordisms (Smolin, 1995). 
The cobordism parameter t (time) plays the role of the third dimension on 
the border components (3.13). 
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Thus the topology-changing amplitude is obtained simply by substitution 
of the corresponding Chern-Simons invariants into the expression (4.6), 

[q 'r ie21,n~ 
c(a,,n) expt -: / 

(_/0,i),(/i+ l,n+ 1) 
\ zulx / 

X exp -~- -g  + g(l; + l '+0 (5.10) 

where the summation is taken over the admissible collections (_/;,;) and 

(/;+1~,+0, which determine the flat connections over 1~(a_o,i) X {1} and 

~(_ai+l,,+l) • { 1 }, respectively (i.e., summation is performed over all flat 
connections in the intermediate state at t = 1). Furthermore, c (a~)  is a 
constant depending apparently on the boundary volume-factors (Fujiwara et 
al., 1992). 

Observation 5.1. The cobordism lji/bords "~ depends on the partition of vv I ~_.l,n ) 

the set a = {al . . . . .  an} into nonempty subsets {aj~ . . . . .  aji} and {ayi+ ~, 
. . . .  aj~} (see Observation 3.1). Thus not only are the Chern-Simons invari- 
ants CS(~s and CS(E(.qi+l~+l)) defined by this partition, but so are the 
coefficients c(al,n). If the partition is not fixed by physical conditions, one 
must sum expressions of type (5.10) over all these unordered partitions. 

Observation 5.2. Using our previous results (Efremov, 1996), we can 
demonstrate that the wave function (5.10) is factorized to the lens space 
wave functions 

~(wb~ 

c(al,~) ~ [-[ \ zx-[2~ri ) = exp/-yi:  CS(L(ak, bk) 
(l'o.i),(!~+ 1,~+ 0 k= l 

• exp(__~E CS,(L(ak, bk)) exp( ~(1~. +__ l'+0~ 4A E ] (5.11) 

where 

(/lO'i) 2 (/~Ori) 2 
C S ( L ( a k ,  b k )  - -  , CS'(L(ak, bk) - 4a 4a 

(Kirk and Klassen, 1990). 
In the case of the Fintushel-Stern cobordism (Efremov, 1996) the rota- 

tion number collection was transferred from an initial hypersurface to a final 
one through the set of lens spaces L(ak, bk), k = 1, 2 . . . . .  n. Therefore the 
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equalities lk = l~, k = 1, 2 . . . . .  n, were satisfied. In the Siebenmann-type 
cobordism with the trivial connection in an intermediate state (at t = 0) the 
admissible rotation number collections in the initial state and those in the 
final state are independent. Thus it should be summed over all admissible 
rotation number collections of the final state. 

Similar arguments for the inverse cobordism (3.11') lead to the other 
amplitude 

~(--Wb~ 

[ ] 'rri 
= c(al~) 2 exp 2 - ~  (e2'i + e2+l n+0 

[ 1 ((e~)2 ) ]  
• exp -~--~ + ~(l~ + 1"+1) (5.10') 

which describes the topology change (3.5'). In this case the initial state is 
fixed by the specification of connections over the Sfn-spheres E~0~) • 
{-2} and E(a~+l,~+l) X {--2}, and summation is taken over all admissible 
collections (/~,) which fix the flat connection over ~(a~,n) • {0} (intermediate 

state), while the rotation numbers l~ and/ '+t  are determined uniquely: 

1~ = ~ ao, ao = a i §  " " "  an 
j=i+l aj 

ln'+l ~ l~ = - - a n + l ,  an+l = a t  �9 ai 
j=t aj  

Trivial connections on the cobordism -W~rd(gt,~) are defined over the 
Sfh-spheres E(a0,i) • { -  1 }, E(aj+t~+0 • { -  1 }, and E(gl,~) • { 1 } and in 
the regions M(ao, a~§ • [0, 1] and (TSo t.I TSn+t) • [ -1 ,  01. 

Observation 5.3. In the case under consideration the initial state fixes 
the partition of the set {_a} into two subsets (see Observation 3.1). Thus to 
obtain the total process amplitude, it should not be summed over different 
partitions as in Observation 5.1. 

It is interesting to compare the amplitudes (5.10) and (5.10') with the 
corresponding wave functions describing the topology changes (3.5) and 
(3.5'), but by means of the cobordisms (3.4) and (3.4'), respectively. The 
latter conform to "tunneling" through an infinitely thin Euclidean-signature 
layer in a neighborhood of the critical level 

[X(oI, i U X(ai+l,n) U TSo t3 TSn+d • {0} (5.12) 
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To begin with we consider a 2e-neighborhood of the critical level (bilat- 
eral e-collar) 

(cold = [X(al,i LJ X(ai§ U TSo U TS,,+I] • [-r e] 

= (~(al,,) IA M(ao, an+O) 

• [ - e ,  0] U (E(a0,i)) kl E(ai+l,,+0) X [0, e] (5.13) 

This is the Euclidean-signature region. The Lorentzian-signature regions are 
sewed at the boundary of the bilateral e-collar. Therefore the trivial connection 
corresponds to the boundary 0(coil). When r ---> 0 we obtain the trivial 
connection level (5.12). 

Then the wave function describing the tunneling through an infinitely 
thin Euclidean-signature layer is 

~(wb~ = c(a_L.) , ~ ,  exp ~ ((e;,i) 2 + (e;+t.n+l) 2 -- e~,n) 
(/0,i)(10,i) 

(5.14) 

The initial conditions are defined on the Sfh-sphere (E(_a_t,,)). Summation is 
performed over all admissible rotation number collections, which fix the 
flat connections over out-manifolds (]~(a0,i)) and E(a~§247 The inverse 
topology-changing process is characterized by the amplitude 

~I ' f ( - -wb~ : C(al ,n)  ~ exp ~ ((eo,i) 2 + (ei+l,n+l) 2 - -  (e~,n) 2) 
(/t,~) 

(5.14') 

where summation takes place over all admissible collections (/~,,) defining 

the flat connections on the final Sfh-sphere. The other component of the out- 
manifold M(ao, a,,+O carries the trivial connection as always. Analogous 
observations are valid for factorization of the amplitudes (5.14) and (5.14') 
as well as for (5.10) and (5.10'). But in the amplitudes (5.14) and (5.14') 
exponential decay terms are absent, since Euclidean-signature layers are 
finitely thin. 

6. DISCUSSION AND CONCLUSION 

In this paper the following three principal results may be emphasized. 
1. The simplest examples of Siebenmann-type cobordisms with borders 

describing tunneling-top01ogy changes through Euclidean-signature regions 
are constructed. These cobordisms differ from the Fintushel-Stern ones since 
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there are no lens spaces in the initial, intermediate, and final states. However, 
the Siebenmann-type cobordisms contain in the in- or out-state Sf-manifolds 
with two exceptional fibers which are homeomorphic to S 3. 

2. Topology-change amplitudes for the Siebenmann-type cobordisms 
are evaluated. Just as in Efremov (1996), the stationary-phase approximation 
is used, but the trivial connection assumption for intermediate states is new. 
This supposition allows us to sew the Lorentzian- and Euclidean-signature 
regions such that wave functions are continuous on their boundary. 

3. All wave functions in the stationary-phase approximation are 
expressed in terms of Chern-Simons invariants of a flat SU(2)-connection 
over Sfh-spheres and are factorized into wave functions expressed in terms 
of Chern-Simons invariants of the appropriate SU(2)-bundles over lens 
spaces. The tunneling-topology-changing amplitudes significantly differ from 
those obtained for the Fintushel-Stern cobordisms (Efremov, 1996). In the 
case of Fintushel-Stern cobordisms the flat-connection information is trans- 
ferred partially from the initial Sfh-spheres to the final ones through the 
set of lens spaces. In our approach to Siebenmann-type cobordisms all the 
information about the connections is lost by the transition through hypersur- 
faces with the trivial connections. This is stipulated by the severe conditions 
of trivial connection over the boundaries between Euclidean- and Lorentzian- 
signature regions. But these are the natural conditions for wave functions to 
be continuous and they give us the possibility to apply the Kirk-Klassen 
method to evaluate the Chern-Simons invariants of flat SU(2)-connections 
over cobordism borders. The cobordism parameter t "time" serves as one 
(the third) dimension on the border. Thus at the border a three-dimensional 
Euclidean Chern-Simons theory does work (Smolin, 1995), which is exactly 
equivalent to Einstein's gravitation in three dimensions (Witten, 1988), which 
leads to flat connections as a consequence of the vacuum 3D Einstein equa- 
tions. The very border-component contributions lead to the exponential decay 
terms in the wave functions (5.10) and (5.10'). 

Our method permits us to evaluate the topological-change amplitudes 
for a more complicated process, 

n-2 n-2 

I I  E(ail, ai+l ' ain+2) --9 ~(alaz ) [ I  M(ail, aT+l) (6.1) 
i=1 i=2 

(where a'l = at "'" ai, aT+l = ai+l "'" a,), as in the case of Fintushel-Stern 
cobordisms. This topology change can be interpreted as the creation of a 
universe ~ t , n )  out of the simplest Sfh-spheres having the minimal number 
(k = 3) of exceptional fibers. The expression (6.1) may be considered as a 
three-dimensional analog of the Thurston trinion decomposition of a Sfh- 
sphere (Smolin, 1995; Crane, 1991) [see the explanation after the expression 
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(2.2)]. Thus the inverse process describes the decay of a Sfh-sphere into 
three-dimensional trinions, i.e., into Sfh-spheres with three exceptional fibers. 
These tunneling changes are accompanied by the creation or annihilation of 
Sf-manifolds M(a~, a7+1) homeomorphic to S 3. 

From our point of view the study of these topology changes may shed 
light on the problem of fixing fundamental constants (Weinberg, 1989; Kleva- 
nov et aL, 1989; Efremov, 1996) 
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